Difluorobenzoxadiazole-based conjugated polymers for efficient non-fullerene polymer solar cells with low voltage loss

Organic Electronics(2020)

引用 3|浏览15
暂无评分
摘要
Two donor-acceptor (D-A) conjugated copolymers based on difluorobenzoxadiazole (ffBX) and oligothiophenes, i.e., PffBX-2T and PffBX-TT, were designed and synthesized for polymer solar cells (PSCs). Compared to the polymers based on difluorobenzothiadiazole (ffBT) units, the two ffBX-based polymers presented identical optical bandgaps (~1.62 eV), but lower highest occupied molecular orbital (HOMO) energy levels. Owing to the down-shifted HOMO levels, the PSCs based on PffBX-2T and PffBX-TT showed lower voltage loss, and the open-circuit voltage (Voc) was ~0.1 V higher than that of the devices with the ffBT-based polymer. As a result, higher photovoltaic performance was achieved for the devices based on the ffBX-based polymers. The power conversion efficiencies (PCEs) of the non-fullerene PSCs with PffBX-2T and PffBX-TT as the donor were 8.72% and 10.12%, respectively. The superior device performance of PffBX-TT resulted from the efficient exciton dissociation and charge transport as well as weak charge recombination, which could be ascribed to the favorable face-on packing of the conjugated backbones and the desired morphology in the blend film. Our study demonstrates that difluorobenzoxadiazole is a promising building block for constructing conjugated polymers for high-performance non-fullerene PSCs.
更多
查看译文
关键词
Difluorobenzoxadiazole,Alkylthiophene side chains,Voltage loss,Non-fullerene polymer solar cells
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要