Modeling the thermal and soot oxidation dynamics inside a ceria-coated gasoline particulate filter

CONTROL ENGINEERING PRACTICE(2020)

Cited 8|Views18
No score
Abstract
Gasoline particulate filters (GPFs) are practically adoptable devices to mitigate particulate matter emissions from vehicles using gasoline direct ignition engines. This paper presents a newly developed control-oriented model to characterize the thermal and soot oxidation dynamics in a ceria-coated GPF. The model utilizes the GPF inlet exhaust gas temperature, exhaust gas mass flow rate, the initial GPF soot loading density, and air- fuel ratio to predict the internal GPF temperature and the amount of soot oxidized during regeneration events. The reaction kinetics incorporated in the model involve the rates of both oxygen- and ceria-initiated soot oxidation reactions. Volumetric model parameters are calculated from the geometric information of the coated GPF, while the air-fuel ratio is used to determine the volume fractions of the exhaust gas constituents. The exhaust gas properties are evaluated using the volume fractions and thermodynamic tables, while the cordierite specific heat capacity is identified using a clean experimental data set. The enthalpies of the regeneration reactions are calculated using thermochemical tables. Physical insights from the proposed model are thus enhanced by limiting the number of parameters obtained from fitting to only those which cannot be directly measured from experiments. The parameters of the model are identified using the particle swarm optimization algorithm and a cost function designed to simultaneously predict both thermal and soot oxidation dynamics. Parameter identification and model validation are performed using independent data sets from laboratory experiments conducted on a ceria-coated GPF. This work demonstrates that the proposed model can be successfully implemented to predict ceria-coated GPF dynamics under different soot loading and temperature conditions.
More
Translated text
Key words
Gasoline direct injection,gasoline particulate filter,catalytic washcoat,particle swarm optimization,experimental validation
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined