Highly Efficient Multiplexed Base Editing With Minimized Off-Targets For The Development Of Universal Car-T Cells To Treat Pediatric T-All

BLOOD(2019)

引用 2|浏览9
暂无评分
摘要
Autologous CAR-T therapies have demonstrated remarkable efficacy in treating some hematologic cancers. While these therapies can have substantial clinical benefit for patients, generating bespoke cell therapies creates manufacturing challenges, resulting in inconsistent products and delays in treatment that are often incompatible with effective clinical management of patients. Strategies to create universally-compatible CAR-T therapies, generated from single donors for the treatment of many patients, have been developed as a solution to these challenges, thereby reducing cost of goods, lot-to-lot variability and enabling timely treatment. Mitigating the risks of graft-versus-host-disease (GvHD) and host rejection of CAR-Ts are important components of any strategy to generate these universal therapies. Most first generation approaches utilize DNA double strand break (DSB)-inducing nucleases to ablate the expression of relevant genes in donor T cells to overcome these barriers. However, simultaneous induction of multiple DSBs results in a cell population containing genomic rearrangements, and can lead to significantly reduced cell proliferation. Approaches to develop CAR-T therapies for T cell malignancies, such as T-ALL, encounter additional challenges, including extensive fratricide caused by targeting T cell surface markers such as CD3 and CD7, which are present on both the malignant and the CAR-T cells. Resolving this issue requires additional gene editing, leading to, in the case of nuclease-based strategies, an increased number of DSBs, further genomic rearrangements, and decreased cell expansion.
更多
查看译文
关键词
efficient multiplexed base editing,cells,off-targets,t-all
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要