Hot Spot Chemistry in Several Polymer‐bound Explosives under Nanosecond Shock Conditions

PROPELLANTS EXPLOSIVES PYROTECHNICS(2020)

引用 12|浏览8
暂无评分
摘要
Initial hot spot temperatures and temperature evolutions for 4 polymer-bound explosives under shock compression by laser-driven flyer plates at speeds from 1.5-4.5 km s(-1) are presented. A new averaging routine allows for improved signal to noise in shock compressed impactor experiments and yields temperature dynamics which are more accurate than has been previously available. The PBX formulations studied here consist of either pentaerythritol tetranitrate (PETN), 1,3,5-trinitro-1,3,5-triazinane (RDX), 2,4,6-trinitrotoluene (TNT), or 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) in a 80/20 wt.% mixture with a silicone elastomer binder. The temperature dynamics demonstrate a unique shock strength dependence for each base explosive. The initial hot spot temperature and its evolution in time are shown to be indicative of chemistry occurring within the reaction zone of the four explosives. The number density of hot spots is qualitatively inferred from the spatially-averaged emissivity and appears to increase exponentially with shock strength. An increased emissivity for formulations consisting of TNT and TATB is consistent with carbon-rich explosives and in increased hot spot volume. Qualitative conclusions about sensitivity were drawn from the initial hot spot temperature and rate at which the number of hot spots appear to grow.
更多
查看译文
关键词
PBX,Pyrometry,Emission Spectra,PETN,RDX,TNT,TATB
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要