An effective method for shear-wave velocity prediction in sandstones

Marine Geophysical Research(2019)

Cited 6|Views23
No score
Abstract
Shear-wave velocity is essential in various seismic exploration applications, including seismic modeling, amplitude variation with offset analysis, multicomponent seismic data interpretation and other exploration applications. This study presents a simple but effective method for S-wave velocity prediction from P-wave velocity based on granular media model. In the proposed method, the soft-sand, intermediate stiff-sand and stiff-sand models are unified with the expression of the soft-sand model with an effective coordination number. The shear modulus of dry rocks can be related to bulk modulus through the coordination number in the unified model. Elastic-wave velocities of water-saturated rocks at low frequencies can be predicted from the moduli of dry rock using Gassmann’s equation. Thus, the coordination number can be inverted from P-wave velocity of saturated rocks by combining the unified granular media model and Gassmann’s equation. Eventually, S-wave velocity of saturated rock is computed with the inverted effective coordination number. The numerical results indicate that the predicted S-wave velocities agree well with the measured velocities for the laboratory data and well logging data. The proposed method is applicable to sandstones with lithification of large ranges because the unified granular media model accounts for the media between Hashin–Shtrikman lower bound and upper bound. Moreover, the new method is quite suitable for the prediction of S-wave velocity in sandstones deposited in deep-water environment, particularly for turbidite sediment.
More
Translated text
Key words
S-wave velocity prediction, Granular-medium model, Sandstones
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined