Sheathless inertial focusing chip combining a spiral channel with periodic expansion structures for efficient and stable particle sorting.

ANALYTICAL CHEMISTRY(2020)

引用 45|浏览83
暂无评分
摘要
Efficient and reliable manipulation of biological particles is crucial in medical diagnosis and chemical synthesis. Inertial microfluidic devices utilizing passive hydrodynamic forces in the secondary flow have drawn considerable attention for their high throughputs, low costs, and harmless particle manipulation. However, as the dominant mechanism, the inertial lift force is difficult to quantitatively analyze because of the uncertainties of its magnitude and direction. The equilibrium position of particles varies along the migration process, thus inducing the instabilities of particle separation. Herein, we present a designable inertial microfluidic chip combining a spiral channel with periodic expansion structures for the sheathless separation of particles with different sizes. The stable vortex-induced lift force arising from the periodic expansion and the Dean drag force significantly enhanced the focusing process and determined the final equilibrium position. The experimental results showed that over 99% of target particles could be isolated with the high target sample purity of 86.12%. In the biological experiment, 93.5% of the MCF-7, 89.5% of the Hela, and 88.6% of the A549 cells were steadily recovered with excellent viabilities to verify the potential of the device in dealing with biological particles over a broad range of throughputs. The device presented in this study can further serve as a lab-on-chip platform for liquid biopsy and diagnostic analysis.
更多
查看译文
关键词
sheathless inertial focusing chip,spiral channel,particle
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要