Reconstructing embedded graphs from persistence diagrams

Computational Geometry(2020)

引用 16|浏览59
暂无评分
摘要
The persistence diagram (PD) is an increasingly popular topological descriptor. By encoding the size and prominence of topological features at varying scales, the PD provides important geometric and topological information about a space. Recent work has shown that well-chosen (finite) sets of PDs can differentiate between geometric simplicial complexes, providing a method for representing complex shapes using a finite set of descriptors. A related inverse problem is the following: given a set of PDs (or an oracle we can query for persistence diagrams), what is underlying geometric simplicial complex? In this paper, we present an algorithm for reconstructing embedded graphs in Rd (plane graphs in R2) with n vertices from n2−n+d+1 directional (augmented) PDs. Additionally, we empirically validate the correctness and time-complexity of our algorithm in R2 on randomly generated plane graphs using our implementation, and explain the numerical limitations of implementing our algorithm.
更多
查看译文
关键词
Shape reconstruction,Persistent homology,Topological descriptors
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要