Topological encoding method for data-driven photonics inverse design.

OPTICS EXPRESS(2020)

引用 10|浏览0
暂无评分
摘要
Data-driven approaches have been proposed as effective strategies for the inverse design and optimization of photonic structures in recent years. In order to assist data-driven methods for the design of topology of photonic devices, we propose a topological encoding method that transforms photonic structures represented by binary images to a continuous sparse representation. This sparse representation can be utilized for dimensionality reduction and dataset generation, enabling effective analysis and optimization of photonic topologies with data-driven approaches. As a proof of principle, we leverage our encoding method for the design of two dimensional non-paraxial diffractive optical elements with various diffraction intensity distributions. We proved that our encoding method is able to assist machine-learning-based inverse design approaches for accurate and global optimization. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要