Machine learning based quantification of ejection and filling parameters by fully automated dynamic measurement of left ventricular volumes from cardiac magnetic resonance images

Magnetic Resonance Imaging(2020)

Cited 9|Views9
No score
Abstract
Background Although analysis of cardiac magnetic resonance (CMR) images provides accurate and reproducible measurements of left ventricular (LV) volumes, these measurements are usually not performed throughout the cardiac cycle because of lack of tools that would allow such analysis within a reasonable timeframe. A fully-automated machine-learning (ML) algorithm was recently developed to automatically generate LV volume-time curves. Our aim was to validate ejection and filling parameters calculated from these curves using conventional analysis as a reference. Methods We studied 21 patients undergoing clinical CMR examinations. LV volume-time curves were obtained using the ML-based algorithm (Neosoft), and independently using slice-by-slice, frame-by-frame manual tracing of the endocardial boundaries. Ejection and filling parameters derived from these curves were compared between the two techniques. For each parameter, Bland-Altman bias and limits of agreement (LOA) were expressed in percent of the mean measured value. Results Time-volume curves were generated using the automated ML analysis within 2.5 ± 0.5 min, considerably faster than the manual analysis (43 ± 14 min per patient, including ~10 slices with 25–32 frames per slice). Time-volume curves were similar between the two techniques in magnitude and shape. Size and function parameters extracted from these curves showed no significant inter-technique differences, reflected by high correlations, small biases (<10%) and mostly reasonably narrow LOA. Conclusion ML software for dynamic LV volume measurement allows fast and accurate, fully automated analysis of ejection and filling parameters, compared to manual tracing based analysis. The ability to quickly evaluate time-volume curves is important for a more comprehensive evaluation of the patient's cardiac function.
More
Translated text
Key words
AFV,CMR,EF,EDV, ESV,ET,FT,LV,ML,RFV
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined