Peak focusing based on stationary phase thickness gradient.

Journal of chromatography. A(2019)

Cited 6|Views15
No score
Abstract
This paper reports the development of a stationary phase thickness gradient gas chromatography (GC) column that enables analyte peak focusing and improves separation resolution. Theoretical analysis and simulation demonstrate focusing via a positive thickness gradient, i.e., the stationary phase thickness increases along the column. This effect was experimentally verified by coating a 5 m long capillary column with a film thickness varying from 34 nm at the column inlet to 241 nm at the column outlet. The column was analyzed in forward (thin to thick) and backward (thick to thin) modes and compared to a uniform thickness column with a thickness of 131 nm, using alkanes ranging from C5 to C16 and aromatics. Comparison of resolutions between forward mode and the uniform thickness column demonstrated an overall focusing rate (i.e., improvement in peak capacity) of 11.7% on alkanes and 28.2% on aromatics. The focusing effect was also demonstrated for isothermal room temperature separation of highly volatile compounds and temperature programmed separation with different ramping rates. In all cases, peak capacities from forward mode separations are higher than those from other modes, indicating the ability of a positive thickness gradient to focus analyte peaks. This thickness gradient technique can therefore be broadly applied to various stationary phases and column types as a general method for improving GC separation performance.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined