Hemistepsin A alleviates liver fibrosis by inducing apoptosis of activated hepatic stellate cells via inhibition of nuclear factor-κB and Akt.

Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association(2019)

Cited 14|Views30
No score
Abstract
Hemistepsin A (HsA), isolated from Hemistepta lyrata (Bunge) Bunge, has the ability to ameliorate hepatitis in mice. However, the effects of H. lyrata and HsA on other types of liver disease have not been explored. In this report, we investigated the effects of H. lyrata and HsA on liver fibrosis and the underlying molecular mechanisms in activated hepatic stellate cells (HSCs). Based on cell viability-guided isolation, we found HsA was the major natural product responsible for H. lyrata-mediated cytotoxicity in LX-2 cells. HsA significantly decreased the viability of LX-2 cells and primary activated HSCs, increased the binding of Annexin V, and altered the expression of apoptosis-related proteins, suggesting that HsA induces apoptosis in activated HSCs. HsA reduced the phosphorylation of IKKε and the transactivation of nuclear factor-κB (NF-κB). Moreover, HsA decreased the phosphorylation of Akt and its downstream signaling molecules. Transfection experiments suggested that inhibition of NF-κB or Akt is essential for HsA-induced apoptosis of HSCs. In a CCl4-induced liver fibrosis model, HsA administration significantly decreased ALT and AST activities. Furthermore, HsA attenuated CCl4-mediated collagen deposits and profibrogenic genes expression in hepatic tissue. Thus, HsA may serve as a natural product for managing liver fibrosis through inhibition of NF-κB/Akt-dependent signaling.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined