Benchmark Quantum Kinetics at Low Temperatures Toward Absolute Zero and Role of Entrance Channel Wells on Tunneling, Virtual States and Resonances: The F+HD Reaction.

JOURNAL OF PHYSICAL CHEMISTRY A(2020)

引用 14|浏览4
暂无评分
摘要
This paper reports a study of the quantum reaction dynamics and kinetics of the F + HD reaction at low and ultralow temperatures, focusing on the range from the Wigner limit up to 50 K. Close coupling time-independent quantum reactive scattering calculations for the production of HF and DF molecules have been carried out on two potential energy surfaces differing in the description of the reaction entrance channel. This case is computationally more demanding than the cases of F with H-2 and D-2 (De Fazio et al. Frontiers in Chemistry, 2019, 7, 328) but offers a wider phenomenology regarding the roles of quantum mechanical effects of tunneling, of virtual states, and of resonances. The results show that at the temperatures in the cold and ultracold regimes small changes in the entrance channel long-range interaction induce surprising near threshold features. The presence of a virtual state close to the reactive threshold gives rise to a marked anti-Arrhenius behavior of the rate constants below 100 mK. This effect enhances reaction rates by about 2 orders of magnitude, making them of the same order as those at room temperature and confining the onset of the Wigner regime in the microkelvin region.
更多
查看译文
关键词
Quantum Simulation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要