Probabilistic motional averaging

The European Physical Journal B(2020)

引用 4|浏览70
暂无评分
摘要
In a continuous measurement scheme a spin-1/2 particle can be measured and simultaneously driven by an external resonant signal. When the driving is weak, it does not prevent the particle wave-function from collapsing and a detector randomly outputs two responses corresponding to the states of the particle. In contrast, when driving is strong, the detector returns a single response corresponding to the mean of the two single-state responses. This situation is similar to a motional averaging, observed in nuclear magnetic resonance spectroscopy. We study such quantum system, being periodically driven and probed, which consists of a qubit coupled to a quantum resonator. It is demonstrated that the transmission through the resonator is defined by the interplay between driving strength, qubit dissipation, and resonator linewidth. We demonstrate that our experimental results are in good agreement with numerical and analytical calculations.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要