Cooperative blockade of PKCα and JAK2 drives apoptosis in glioblastoma.

CANCER RESEARCH(2020)

引用 13|浏览47
暂无评分
摘要
The mTOR signaling is dysregulated prominently in human cancers including glioblastoma, suggesting mTOR as a robust target for therapy. Inhibitors of mTOR have had limited success clinically, however, in part because their mechanism of action is cytostatic rather than cytotoxic. Here, we tested three distinct mTOR kinase inhibitors (TORKi) PP242, KU-0063794, and sapanisertib against glioblastoma cells. All agents similarly decreased proliferation of glioblastoma cells, whereas PP242 uniquely induced apoptosis. Apoptosis induced by PP242 resulted from off-target cooperative inhibition of JAK2 and protein kinase Calpha (PKC alpha). Induction of apoptosis was also decreased by additional on-target inhibition of mTOR, due to induction of autophagy. As EGFR inhibitors can block PKC alpha, EGFR inhibitors erlotinib and osimertinib were tested separately in combination with the JAK2 inhibitor AZD1480. Combination therapy induced apoptosis of glioblastoma tumors in both flank and in patient-derived orthotopic xenograft models, providing a preclinical rationale to test analogous combinations in patients. Significance: These findings identify PKCa and JAK2 as targets that drive apoptosis in glioblastoma, potentially representing a clinically translatable approach for glioblastoma.
更多
查看译文
关键词
jak2 drives apoptosis,pkcα
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要