Incremental Learning of Abnormalities in Autonomous Systems

2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)(2019)

Cited 4|Views40
No score
Abstract
In autonomous systems, self-awareness capabilities are useful to allow artificial agents to detect abnormal situations based on previous experiences. This paper presents a method that facilitates the incremental learning of new models by an agent. Available learned models can dynamically generate probabilistic predictions as well as evaluate their mismatch from current observations. Observed mismatches are grouped through an unsupervised learning strategy into different classes, each of them corresponding to a dynamic model in a given region of the state space. Such clusters define switching Dynamic Bayesian Networks (DBNs) employed for predicting future instances and detect anomalies. Inferences generated by several DBNs that use different sensorial data are compared quantitatively. For testing the proposed approach, it is considered the multi-sensorial data generated by a robot performing various tasks in a controlled environment and a real autonomous vehicle moving at a University Campus.
More
Translated text
Key words
incremental learning,autonomous systems,self-awareness capabilities,artificial agents,probabilistic predictions,unsupervised learning strategy,dynamic Bayesian networks,DBNs,autonomous vehicle,multisensorial data
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined