Decreased cpg15 augments oxidative stress in sleep deprived mouse brain.

Biochemical and Biophysical Research Communications(2020)

引用 4|浏览6
暂无评分
摘要
Sleep deprivation (SD) has detrimental effects on the physiological function of the brain. However, the underlying mechanism remains elusive. In the present study, we investigated the expression of candidate plasticity-related gene 15 (cpg15), a neurotrophic gene, and its potential role in SD using a REM-SD mouse model. Immunofluorescent and Western blot analysis revealed that the expression of cpg15 protein decreased in the hippocampus, ventral group of the dorsal thalamus (VENT), and somatosensory area of cerebral cortex (SSP) after 24–72 h of REM-SD, and the oxidative stress in these brain regions was increased in parallel, as indicated by the ratio of glutathione (GSH) to its oxidative product (GSSG). Over-expression of cpg15 in thalamus, hippocampus, and cerebral cortex mediated by AAV reduced the oxidative stress in these regions, indicating that the decrease of cpg15 might be a cause that augments oxidative stress in the sleep deprived mouse brain. Collectively, the results imply that cpg15 may play a protective function in the SD-subjected mouse brain via an anti-oxidative function. To our knowledge, this is the first time to provide evidences in the role of cpg15 against SD-induced oxidative stress in the brain.
更多
查看译文
关键词
Sleep deprivation,cpg15,Oxidative stress
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要