Color conversion efficiency enhancement of colloidal quantum dot through its linkage with synthesized metal nanoparticle on a blue light-emitting diode.

OPTICS LETTERS(2019)

引用 19|浏览15
暂无评分
摘要
Four surface-modified and, hence, positively charged metal nanoparticles (NPs) of different localized surface plasmon (LSP) resonance wavelengths are synthesized for linking with negatively charged, red-emitting colloidal CdZnSeS/ZnS quantum dots (QDs) on the top surface of a blue-emitting InGaN/GaN quantum well (QW) light-emitting diode (LED) through electro-static force. The metal NP-QD linkage leads to a short distance between them for producing their strong surface plasmon (SP) coupling, such that QD absorption and emission can be enhanced. Meanwhile, the small p-GaN thickness in the LED results in strong SP coupling between the LSP resonance of metal NP and the QWs of the LED, leading to enhanced QW emission and, hence, stronger QD excitation. All those factors together result in the increase of the color conversion efficiency of the QD. (C) 2019 Optical Society of America
更多
查看译文
关键词
colloidal quantum dot,synthesized metal nanoparticle,light-emitting
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要