An Artificial Skyrmion Platform With Robust Tunability In Synthetic Antiferromagnetic Multilayers

ADVANCED FUNCTIONAL MATERIALS(2020)

Cited 17|Views18
No score
Abstract
Magnetic skyrmions are topologically nontrivial spin structures, and their existence in ferromagnetically coupled multilayers has been widely reported with a disordered arrangement. Here, a nucleation scenario of ordered skyrmions in nanostructured synthetic antiferromagnetic (SAF) multilayers is proposed and experimentally demonstrated using direct magnetization imaging, indirect magnetometer and magnetoresistance measurement, and micromagnetic simulation. Instead of relying on Dzyaloshinskii-Moriya interaction, the antiferromagnetic interlayer exchange coupling in the SAF multilayers fulfills the role of nucleation and stabilization of skyrmions. The robustness of the proposed skyrmion nucleation scenario is examined against temperature from 4.5 to 300 K and device size from 400 to 1200 nm. Interestingly, these synthetic skyrmions still behave well with a size less than 100 nm. The higher stability than generic magnetic domains can be attributed to topological protection. The results thus provide an artificial skyrmion platform to meet the functional needs of high density and designable arrangement in magnonic and spintronic applications.
More
Translated text
Key words
magnetization imaging, magnetoresistance, skyrmions, synthetic antiferromagnetism
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined