Resolution and contrast enhancement of laser-scanning multiphoton microscopy using thulium-doped upconversion nanoparticles

Nano Research(2019)

引用 19|浏览20
暂无评分
摘要
High-contrast optical imaging is achievable using phosphorescent labels to suppress the short-lived background due to the optical backscatter and autofluorescence. However, the long-lived phosphorescence is generally incompatible with high-speed laser-scanning imaging modalities. Here, we show that upconversion nanoparticles of structure NaYF 4 :Yb co-doped with 8% Tm (8T-UCNP) in combination with a commercial laser-scanning multiphoton microscopy are uniquely suited for labeling biological systems to acquire high-resolution images with the enhanced contrast. In comparison with many phosphorescent labels, the 8T-UCNP emission lifetime of ∼ 15 µs affords rapid image acquisition. The high-order optical nonlinearity of the 8T-UCNP ( n ≈ 4, as confirmed experimentally and theoretically) afforded pushing the resolution limit attainable with UCNPs to the diffraction-limit. The contrast enhancement was achieved by suppressing the background using (i) bandpass spectral filtering of the narrow emission peak of 8T-UCNP at 455-nm, and (ii) time-gating implemented with a time-correlated single-photon counting system that demonstrated the contrast enhancement of > 2.5-fold of polyethyleneimine-coated 8T-UCNPs taken up by human breast adenocarcinoma cells SK-BR-3. As a result, discrete 8T-UCNP nanoparticles became clearly observable in the freshly excised spleen tissue of laboratory mice 15-min post intravenous injection of an 8T-UCNP solution. The demonstrated approach paves the way for high-contrast, high-resolution, and high-speed multiphoton microscopy in challenging environments of intense autofluorescence, exogenous staining, and turbidity, as typically occur in intravital imaging.
更多
查看译文
关键词
upconversion nanoparticles, autofluorescence, time-gated imaging, scanning microscopy, time-correlated single photon counting
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要