Myc And The Warburg Effect

BLOOD(2018)

Cited 0|Views45
No score
Abstract
Mature B cells recognize and respond in a highly-specific fashion to a multitude of environmental antigens through membrane-bound immunoglobulins forming together with the Igα and Igβ proteins a functional unit called the B cell antigen receptor (BCR). Through a complex network of effector molecules, the BCR transforms environmental signals into biochemical reactions which are responsible for highly codified cellular responses affecting survival, proliferation, migration and terminal differentiation of B cells. Surface BCR expression is conserved in most types of B cell malignancies arising from mature B cells. This observation, together with genetic and biochemical evidence pointing to sustained BCR signaling in different types of B cell neoplasms represents the rationale for the current use of pharmacological inhibitors of BCR signaling to treat several forms of B lymphoproliferative disorders. Nevertheless, our understanding of how the BCR influences malignant B cell behavior remains poorly understood. In an attempt to fill this knowledge gap, we engineered a mouse model to monitor the effects of acute ablation of the BCR in highly-aggressive MYC-driven lymphomas. Inducible BCR ablation did not, per se, prevent the outgrowth of receptor-less MYC lymphoma cells both in vitro and in vivo. Instead, BCR loss weakened the fitness of the malignant B cells leading to the rapid elimination of BCR-less tumor cells in the presence of their BCR-expressing counterparts (Varano et al., 2017). Through the integration of data generated from genomics, metabolomics and bulk/single cell transcriptomics analyses, comparing BCR-deficient lymphoma cells to their proficient counterparts, we have started to elucidate the gene networks and metabolic pathways influenced by BCR expression that sustain competitive fitness of MYC-transformed lymphoma B cells. Data from CRISPR/Cas9-mediated disruption of candidate fitness genes in primary malignant B cells will be presented. In support of the findings in the mouse model, we will provide evidence that BCR-less malignant B cells are spontaneously generated during tumor progression in several forms of human B cell lymphoproliferative disorders, establishing a possible Achilles heel of anti-BCR therapies. Finally, we will report possible strategies enabling the clearance of BCR-less lymphoma cells, taking advantage of their acquired addiction to specific signaling and metabolic pathways. Our results shed light on the coordinated regulation of signaling and metabolism imposed on malignant B cells by BCR expression/signaling and provide indications for improved treatment options to fight several forms of mature B cell malignancies.
More
Translated text
Key words
effect
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined