BabA and LPS inhibitors against Helicobacter pylori: pectins and pectin-like rhamnogalacturonans as adhesion blockers

Applied Microbiology and Biotechnology(2019)

引用 19|浏览4
暂无评分
摘要
The first step in the development of Helicobacter pylori pathogenicity is receptor-mediated adhesion to gastric epithelium. Adhesins of H. pylori not only enable colonisation of the epithelium, with BabA interacting with Lewis b , but also interaction of lipopolysaccharide (LPS) with galectin-3 contributes to attachment of H. pylori to the host cells. Anti-adhesive compounds against H. pylori have been described, but specific analytical assays for pinpointing the interaction with BabA are limited. LPS-galectin-3 inhibitors have not been described until now. A sandwich ELISA with recombinant BabA 547 -6K was developed to investigate the interaction of BabA with Lewis b -HSA. Isothermal titration calorimetry gave thermodynamic information on the interaction between BabA, Lewis b -HSA and anti-adhesive compounds. A highly esterified rhamnogalacturonan from Abelmoschus esculentus inhibited the adhesion of H. pylori to adherent gastric adenocarcinoma (AGS) cells (IC 50 550 μg/mL) and interacted with BabA (IC 50 17 μg/mL). Pectins with similar rhamnogalacturonan structure showed weak anti-adhesive activity. Highly branched rhamnogalacturonans with low uronic acid content and high degree of esterification are potent BabA inhibitors. BabA represents a promising target for the development of anti-adhesive drugs against H. pylori . The rhamnogalacturonan influenced also the binding affinity of H. pylori to recombinant galectin-3 in a concentration-dependent manner with an IC 50 of 222 μg/mL. Similar effects were obtained with pectin from apple fruits, while pectins from other sources were inactive.
更多
查看译文
关键词
Adhesion, Helicobacter pylori , BabA, Lipopolysaccharide, Okra, Pectin, Rhamnogalacturonan
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要