Naturally-Occurring Bacterial Cellulose-Hyperbranched Cationic Polysaccharide Derivative/MMP-9 siRNA Composite Dressing for Wound Healing Enhancement in Diabetic Rats.

Acta Biomaterialia(2020)

引用 51|浏览84
暂无评分
摘要
The anomalous high expression of matrix metalloproteinase 9 (MMP-9) is one important factor that impedes diabetic wound healing. Therefore, inhibition of MMP-9 expression in a diabetic wound could be a feasible method to promote wound healing. In this study, we studied the possibility of self-therapy using wound dressings that contain bacterial cellulose-hyperbranched cationic polysaccharide (BC-HCP) derivatives that encapsulate siRNA (BC-HCP/siMMP-9) and have controlled release properties. Herein, we used four HCPs (Gly-DMAPA, Gly-D4, Amyp-DMAPA, Amyp-D4) as gene carriers. Our results showed that all HCP derivatives were minimally toxic to cells in vitro, while the cationic properties of HCP could be used as a complexation agent for MMP-9 siRNA (siMMP-9). Upon exposure to bacterial cellulose (BC), the BC slowly released HCP/siMMP-9. The released siMMP-9 effectively reduced the gene expression and protein levels of MMP-9 in a human immortalized epithelial cell line (HaCAT) and in diabetic rat wounds. Inhibition of MMP-9 in the wounds of diabetic rats resulted in a significant enhancement of wound healing, suggesting that the BC-HCP/siMMP-9 composite dressing could be used as a safe and effective dressing to promote wound healing in diabetic rats.
更多
查看译文
关键词
Bacterial cellulose,Hyperbranched cationic polysaccharide derivatives,RNA interference,Matrix metalloproteinase 9,Diabetic wound healing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要