Stimuli-responsive nanoparticles for the codelivery of chemotherapeutic agents doxorubicin and siPD-L1 to enhance the antitumor effect

JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS(2020)

Cited 9|Views16
No score
Abstract
Cancer cells have been reported to exhibit high resistance against immune system recognition through various cell intrinsic and extrinsic mechanisms. Considerable challenges have been encountered in monotherapy with chemotherapeutics to attain the desired antitumor efficacy. In this study, a nanodelivery system was designed to incorporate doxorubicin (DOX) and programmed death-ligand 1 (PD-L1) small interfering RNA (siRNA), that is, siPD-L1. DOX and siPD-L1 were formed from a stimuli-responsive polymer with a poly-L-lysine-lipoic acid reduction-sensitive core and a tumor extracellular pH-stimulated shedding polyethylene glycol layer. The codelivery system was stable under physiological pH conditions and demonstrated enhanced cellular uptake at the tumor site. Moreover, the combined treatment of DOX and siPD-L1 exhibited improved antitumor effect in vitro and in vivo compared with either modality alone. The combination of chemotherapy and immunotherapy presented in this work through the codelivery of a chemotherapeutic agent and a gene-silencing agent (siRNA) may provide a new strategy for cancer treatment.
More
Translated text
Key words
chemotherapy,immunotherapy,PEG-detachable,siPD-L1,tumor-microenvironment responsive
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined