Chrome Extension
WeChat Mini Program
Use on ChatGLM

Assuring Clonality on the Beacon Digital Cell Line Development Platform

BIOTECHNOLOGY JOURNAL(2020)

Cited 23|Views30
No score
Abstract
During biomanufacturing cell lines development, the generation and screening for single-cell derived subclones using methods that enable assurance of clonal derivation can be resource- and time-intensive. High-throughput miniaturization, automation, and analytic strategies are often employed to reduce such bottlenecks. The Beacon platform from Berkeley Lights offers a strategy to eliminate these limitations through culturing, manipulating, and characterizing cells on custom nanofluidic chips via software-controlled operations. However, explicit demonstration of this technology to provide high assurance of a single cell progenitor has not been reported. Here, a methodology that utilizes the Beacon instrument to ensure high levels of clonality is described. It is demonstrated that the Beacon platform can efficiently generate production cell lines with a superior clonality data package, detailed tracking, and minimal resources. A stringent in-process quality control strategy is established to enable rapid verification of clonal origin, and the workflow is validated using representative Chinese hamster ovary-derived cell lines stably expressing either green or red fluorescence protein. Under these conditions, a >99% assurance of clonal origin is achieved, which is comparable to existing imaging-coupled fluorescence-activated cell sorting seeding methods.
More
Translated text
Key words
Berkeley Lights,cell line development,Chinese hamster ovary cells,clonality assurance,digital cell culture
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined