谷歌Chrome浏览器插件
订阅小程序
在清言上使用

Microscopy as a tool to investigate the influence of ammonium polyphosphate particle size on the flame retardant properties of polymer composites

Simone P. S. Ribeiro,Raissa C. Martins,Luciana R. M. Estevao, Marco A. C. Nascinnento, Regina S. Nascinnento

MICROSCOPY RESEARCH AND TECHNIQUE(2020)

引用 7|浏览18
暂无评分
摘要
The influence of ammonium polyphosphate (APP) particle size on the performance of an intumescent formulation and on the synergistic action of a series of montmorillonite samples with different d-spacings for the production of flame retardant composites was investigated. The polymer matrix employed was poly(ethylene-co-butyl acrylate), EBA 30, and the intumescent formulation consisted of APP and pentaerythritol (PER). After being processed, the composites were submitted to scanning electron microscopy (SEM), thermogravimetric analysis, heating microscopy, and limiting oxygen index tests. The results indicate that the greater interaction between the APP and PER molecules, caused by the increase of the contact area promoted by the reduction of the APP particle size, could favor the esterification reaction between APP423 and PER, allowing the formation of a greater amount of char precursors in shorter period of time. In addition, the montmorillonite d-spacings had a more pronounced influence on the clays synergistic action with the intumescent formulation containing the APP with smaller particle size. Microscopy has shown to be an important tool to investigate APP particle size effect on the fire retardancy. AFM results enabled the detection of nanometric particles in the sample containing the smallest particle size of APP. SEM micrographs showed that those nanometric particles were better dispersed in the matrix, interacting more effectively with the other components, a factor probably responsible for the superior fire retardancy results. Heating microscopy revealed that the material with smaller APP particle size did show some remaining structure at the temperature of 850 degrees C.
更多
查看译文
关键词
ammonium polyphosphate,flame retardant,intumescent,microscopy,montmorillonite
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要