Assessment of hydrology and nutrient losses in a changing climate in a subsurface-drained watershed.

SCIENCE OF THE TOTAL ENVIRONMENT(2019)

引用 34|浏览11
暂无评分
摘要
Studies assessing the impact of subsurface drains on hydrology and nutrient yield in a changing climate are limited, specifically for Western Lake Erie Basin. This study aimed to evaluate the impact of changing climate on hydro-climatology and nutrient loadings in agricultural subsurface-drained areas on a watershed in northeastern Indiana. The study was conducted using a hydrologic model - the Soil and Water Assessment Tool (SWAT) under two different greenhouse gas emission scenarios (RCP 4.5 and RCP 8.5). Based on analysis, annual subsurface drain flow totals could increase by 70% with respect to the baseline by the end of the 21st century. Surface runoff could increase by 10 to 140% and changes are expected to be greater under RCP 8.5. Soluble phosphorus yield over the basin in a year via subsurface drains could decrease by 30 to 60% under either emission scenarios. Annual total soluble phosphorus yield (soluble phosphorus loading to stream) from subsurface drains and surface runoff could vary from 0.041 to 0.058 kg/ha under RCP 4.5 and 0.035 to 0.064 kg/ha under RCP 8.5 by the end of the 21st century while the values from the baseline model were 0.051 kg/ha. This was attributable to the fact that future climate could have a greater increase in surface runoff than subsurface drain flow based on analysis of the different climate scenarios. Outputs from individual climate model data rather than ensembles provided a band of influence of watershed responses, while outputs from different timelines provided details for evaluating management practice suitability with respect to anticipated differences in climate. valuable information for stakeholders and policy makers for planning management practices to protect water quality. (C) 2019 Elsevier B.V. All rights reserved.
更多
查看译文
关键词
Climate change,Hydrology,Water quality,Subsurface drains,Phosphorus,Soil and Water Assessment Tool (SWAT),Subsurface drainage routines
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要