Clinical Practice Patterns in Temporary Mechanical Circulatory Support for Shock in the Critical Care Cardiology Trials Network (CCCTN) Registry.

CIRCULATION-HEART FAILURE(2019)

引用 58|浏览18
暂无评分
摘要
Background: Temporary mechanical circulatory support (MCS) devices provide hemodynamic assistance for shock refractory to pharmacological treatment. Most registries have focused on single devices or specific etiologies of shock, limiting data regarding overall practice patterns with temporary MCS in cardiac intensive care units. Methods: The CCCTN (Critical Care Cardiology Trials Network) is a multicenter network of tertiary CICUs in North America. Between September 2017 and September 2018, each center (n=16) contributed a 2-month snapshot of consecutive medical CICU admissions. Results: Of the 270 admissions using temporary MCS, 33% had acute myocardial infarction-related cardiogenic shock (CS), 31% had CS not related to acute myocardial infarction, 11% had mixed shock, and 22% had an indication other than shock. Among all 585 admissions with CS or mixed shock, 34% used temporary MCS during the CICU stay with substantial variation between centers (range: 17%-50%). The most common temporary MCS devices were intraaortic balloon pumps (72%), Impella (17%), and veno-arterial extracorporeal membrane oxygenation (11%), although intraaortic balloon pump use also varied between centers (range: 40%-100%). Patients managed with intraaortic balloon pump versus other forms of MCS (advanced MCS) had lower Sequential Organ Failure Assessment scores and less severe metabolic derangements. Illness severity was similar at high- versus low-MCS utilizing centers and at centers with more advanced MCS use. Conclusions: There is wide variation in the use of temporary MCS among patients with shock in tertiary CICUs. While hospital-level variation in temporary MCS device selection is not explained by differences in illness severity, patient-level variation appears to be related, at least in part, to illness severity.
更多
查看译文
关键词
critical care,extracorporeal membrane oxygenation,hemodynamics,myocardial infarction,shock
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要