Spin-Dependent Electron Transport Through Bacterial Cell Surface Multiheme Electron Conduits

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY(2019)

引用 61|浏览14
暂无评分
摘要
Multiheme cytochromes, located on the bacterial cell surface, function as long-distance (>10 nm) electron conduits linking intracellular reactions to external surfaces. This extracellular electron transfer process, which allows microorganisms to gain energy by respiring solid redox-active minerals, also facilitates the wiring of cells to electrodes. While recent studies have suggested that a chiral indexed spin selectivity effect is linked to efficient electron transmission through biomolecules, this phenomenon has not been investigated in extracellular electron conduits. Using magnetic conductive probe atomic force microscopy, Hall voltage measurements, and spin-dependent electrochemistry of the decaheme cytochromes MtrF and OmcA from the metal-reducing bacterium Shewanella oneidensis MR-1, we show that electron transport through these extracellular conduits is spin-selective. Our study has implications for understanding how spin-dependent interactions and magnetic fields may control electron transport across biotic-abiotic interfaces in both natural and biotechnological systems.
更多
查看译文
关键词
electron,spin-dependent
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要