Temporal but not spatial dysmetria relates to disease severity in FA.

JOURNAL OF NEUROPHYSIOLOGY(2020)

Cited 4|Views15
No score
Abstract
Fiiedreich's ataxia (FA) is an inherited disease that causes degeneration of the nervous system. Features of FA include proprioceptive and cerebellar deficits leading to impaired muscle coordination and, consequently, dysmetria in force and time of movement. The aim of this study is to characterize dysmetria and its association to disease severity. Also, we examine the neural mechanisms of dysmetria by quantifying the EMG burst area, duration, and time-to-peak of the agonist muscle. Twenty-seven individuals with FA and 13 healthy controls (HCs) performed the modified Functional Ataxia Rating Scale and goal-directed movements with the ankle. Dysmetria was quantified as position and time error during dorsiflexion. FA individuals exhibited greater time but not position error than HCs. Moreover, time error correlated with disease severity and was related to increased agonist EMG burst. Temporal dysmetria is associated to disease severity, likely due to altered activation of the agonist muscle. NEW & NOTEWORTHY For the first time, we quantified spatial and temporal dysmetria and its relation to disease severity in Friedreich's ataxia (FA). We found that FA individuals exhibit temporal but not spatial dysmetria relative to healthy controls. Temporal dysmetria correlated to disease severity in FA and was predicted from an altered activation of the agonist muscle. Therefore, these results provide novel evidence that FA exhibit temporal but not spatial dysmetria, which is different from previous findings on SCA6.
More
Translated text
Key words
dysmetria,EMG,Friedreich's ataxia
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined