Proliposomes for oral delivery of total biflavonoids extract from Selaginella doederleinii : formulation development, optimization, and in vitro-in vivo characterization.

INTERNATIONAL JOURNAL OF NANOMEDICINE(2019)

引用 17|浏览23
暂无评分
摘要
Purpose: Amentoflavone, robustaflavone, 2 ",3 "-dihydro-3',3"'-biapigenin, 3',3"'-binaringenin and delicaflavone are five major active ingredients in the total biflavonoids extract from Selaginella doederleinii (TBESD) with favorable anticancer properties. However, the natural-derived potent antitumor agent of TBESD is undesirable due to its poor solubility. The present study was to develop and optimize a proliposomal formulation of TBESD (P-TBESD) to improve its solubility, oral bioavailability and efficacy. Materials and methods: P-TBESD containing a bile salt, a protective hydrophilic isomalto-oligosaccharides (IMOs) coating, were successfully prepared by thin film dispersion-sonication method. The physicochemical and pharmacokinetic properties of P-TBESD were characterized, and the antitumor effect was evaluated using the HT-29 xenograft-bearing mice models in rats. Results: Compared with TBESD, the relative bioavailability of amentoflavone, robustaflavone, 2 ",3 "-dihydro-3',3"'-biapigenin, 3',3"'-binaringenin and delicaflavone from P-TBESD were 669%, 523%, 761%, 955% and 191%, respectively. The results of pharmacodynamics demonstrated that both TBESD and P-TBESD groups afforded antitumor effect without systemic toxicity, and the antitumor effect of P-TBESD was significantly superior to that of raw TBESD, based on the tumor growth inhibition and histopathological examination. Conclusion: Hence, IMOs-modified proliposomes have promising potential for TBESD solving the problem of its poor solubility and oral bioavailability, which can serve as a practical oral preparation for TBESD in the future cancer therapy.
更多
查看译文
关键词
Selaginella doederleinii,proliposomes,sodium deoxycholate,oral bioavailability,antitumor
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要