Taxonomic Weighting Improves the Accuracy of a Gap-Filling Algorithm for Metabolic Models.

BIOINFORMATICS(2020)

引用 5|浏览10
暂无评分
摘要
Motivation: The increasing availability of annotated genome sequences enables construction of genome-scale metabolic networks, which are useful tools for studying organisms of interest. However, due to incomplete genome annotations, draft metabolic models contain gaps that must be filled in a time-consuming process before they are usable. Optimization-based algorithms that fill these gaps have been developed, however, gap-filling algorithms show significant error rates and often introduce incorrect reactions. Results: Here, we present a new gap-filling method that computes the costs of candidate gap-filling reactions from a universal reaction database (MetaCyc) based on taxonomic information. When gap-filling a metabolic model for an organism M (such as Escherichia coli), the cost for reaction R is based on the frequency with which R occurs in other organisms within the phylum of M (in this case, Proteobacteria). The assumption behind this method is that different taxonomic groups are biased toward using different metabolic reactions. Evaluation of the new gap-filler on randomly degraded variants of the EcoCyc metabolic model for E.coli showed an increase in the average F-1-score to 99.0 (when using the variable weights by frequency method at the phylum level), compared to 91.0 using the previous MetaFlux gap-filler and 80.3 using a basic gap-filler. Evaluation on two other microbial metabolic models showed similar improvements.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要