A fully-passive flexible wireless neural recorder for the acquisition of neuropotentials from a rat model.

ACS sensors(2019)

引用 17|浏览10
暂无评分
摘要
Wireless implantable neural interfaces can record high-resolution neuropotentials without constraining patient movement. Existing wireless systems often require intracranial wires to connect implanted electrodes to an external head-stage or / and deploy application specific integrated circuit (ASIC), that is battery-powered or externally power-transferred, raising safety concerns such as infection, electronics failure, or heat-induced tissue damage. This work presents a biocompatible, flexible, implantable neural recorder capable of wireless acquisition of neuropotentials without wires, batteries, energy harvesting units, or active electronics. The recorder, fabricated on a thin polyimide substrate, features a small footprint of 9 mm x 8 mm x 0.3 mm, and is comprised of passive electronic components. The absence of active electronics on the device leads to near zero power consumption, inherently avoiding the catastrophic failure of active electronics. We performed both in-vitro validation in tissue-simulating phantom and in-vivo validation in an epileptic rat. The fully-passive wireless recorder was implanted under rat scalp to measure neuropotentials from its contact electrodes. The implanted wireless recorder demonstrated its capability to capture low voltage neuropotentials, including somatosensory evoked potentials (SSEP) and interictal epileptiform discharges (IED). Wirelessly recorded SSEP and IED signals were directly compared to those from wired electrodes to demonstrate the efficacy of the wireless data. In addition, a CNN (Convoluted Neural Network)-based machine learning algorithm successfully achieved IED signal recognition accuracy as high as 100% and 91% in wired and wireless IED data, respectively. These results strongly support the fully-passive wireless neural recorder's capability to measure neuropotentials as low as tens of microvolts. With further improvement, the recorder system presented in this work may find wide applications in future brain machine interface (BMI) system.
更多
查看译文
关键词
neural recorder,implantable,wireless,flexible,fully passive
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要