Exploring the Relationship between BODIPY Structure and Spectroscopic Properties to Design Fluorophores for Bioimaging.

CHEMISTRY-A EUROPEAN JOURNAL(2020)

引用 22|浏览10
暂无评分
摘要
Designing chromophores for biological applications requires a fundamental understanding of how the chemical structure of a chromophore influences its photophysical properties. We here describe the synthesis of a library of BODIPY dyes, exploring diversity at various positions around the BODIPY core. The results show that the nature and position of substituents have a dramatic effect on the spectroscopic properties. Substituting in a heavy atom or adjusting the size and orientation of a conjugated system provides a means of altering the spectroscopic profiles with high precision. The insight from the structure-activity relationship was applied to devise a new BODIPY dye with rationally designed photochemical properties including absorption towards the near-infrared region. The dye also exhibited switch-on fluorescence to enable visualisation of cells with high signal-to-noise ratio without washing-out of unbound dye. The BODIPY-based probe is non-cytotoxic and compatible with staining procedures including cell fixation and immunofluorescence microscopy.
更多
查看译文
关键词
BODIPY,confocal fluorescence microscopy,fluorophores,lipid bilayers,near-infrared,structure-property relationships
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要