Improvement of solubility and yield of recombinant protein expression in E. coli using a two-step system.

Tahereh Sadeghian-Rizi, Azade Ebrahimi, Fatemeh Moazzen, Hesam Yousefian,Ali Jahanian-Najafabadi

RESEARCH IN PHARMACEUTICAL SCIENCES(2019)

引用 10|浏览4
暂无评分
摘要
Overexpression of recombinant proteins in Escherichia coli results in inclusion body formation, and consequently decreased production yield and increased production cost. Co-expression of chaperon systems accompanied by recombinant protein is a general method to increase the production yield. However, it has not been successful enough due to imposed intense stress to the host cells. The aim of this study was to balance the rate of protein production and the imposed cellular stresses using a two-step expression system. For this purpose, in the first step, green fluorescent protein (GFP) was expressed as a recombinant protein model under control of the T7-TetO artificial promoter-operator, accompanied by Dnak/J/GrpE chaperon system. Then, in the next step, TetR repressor was activated automatically under the control of the stress promoter ibpAB and suppressed the GFP production after accumulation of inclusion bodies. Thus in this step incorrect folded proteins and inclusion bodies are refolded causing increased yield and solubility of the recombinant protein and restarting GFP expression again. Total GFP, soluble and insoluble GFP fractions, were measured by Synergy H1 multiple reader. Results showed that expression yield and soluble/insoluble ratio of GFP have been increased 5 and 2.5 times using this system in comparison with the single step process, respectively. The efficiency of this system in increasing solubility and production yield of recombinant proteins was confirmed. The two-step system must be evaluated for expression of various proteins to further confirm its applicability in the field of recombinant protein production.
更多
查看译文
关键词
Chaperons,E. coli,GFP,Inclusion bodies,Protein solubility,Recombinant proteins
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要