Fowl Adenovirus Serotype 4 Influences Arginine Metabolism to Benefit Replication.

Avian Diseases(2020)

引用 3|浏览14
暂无评分
摘要
Hydropericardium syndrome (HPS) is caused by fowl adenovirus serotype 4 (FAdV-4). HPS has caused outbreaks in Chinese populations of broiler chickens since 2015. However, little is known about the molecular mechanisms underlying HPS. In this study, we used transcriptomic analysis to screen differentially expressed genes (DEGs) in the livers of FAdV-4-infected and noninfected chicks. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the gene network associated with the arginine metabolism pathway was enriched in livers infected by FAdV-4; 10 genes were downregulated and 8 genes were upregulated in these livers when compared to noninfected livers. The DEGs identified in livers were reanalyzed by real-time fluorescence quantitative PCR (qPCR); results indicated that the mRNA levels of the DEGs concurred with the data derived from KEGG analysis. Next, we used qPCR to detect the DEGs of the arginine metabolism pathway in a hepatocellular carcinoma cell line (LMH) after infection with FAdV-4 for 24 hr; this also indicated that the mRNA levels of the DEGs concurred with that seen in the liver. We also used si-RNA oligonucleotides to knock down the mRNA levels of iNOS in LMH cells infected with FAdV-4 and found that the viral load of FAdV-4 was increased. Further investigation revealed that the addition of 240 lg/ml of arginine into the culture medium of LMH cells infected with FAdV-4 for 24 hr led to a significant increase in the mRNA levels of iNOS but a significant reduction in the viral load of FAdV-4. Therefore, our data indicated that when broiler chickens become infected with FAdV-4, the arginine metabolic pathway in the liver becomes dysfunctional and the iNOS mRNA level decreases. This will add benefit to the replication of FAdV-4 but can be inhibited by the addition of an appropriate amount of arginine.
更多
查看译文
关键词
transcriptome,arginine metabolism,fowl adenovirus serotype 4,inducible nitric-oxide synthase,arginine enzyme
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要