Initial Orbit Determination from Atmospheric Drag Direction

JOURNAL OF GUIDANCE CONTROL AND DYNAMICS(2019)

引用 2|浏览0
暂无评分
摘要
No AccessEngineering NotesInitial Orbit Determination from Atmospheric Drag DirectionRui Zhang, Chao Han, Xiucong Sun and Zheng QiRui ZhangBeihang University, 100191 Beijing, People’s Republic of China*Master Student, School of Astronautics; .Search for more papers by this author, Chao HanBeihang University, 100191 Beijing, People’s Republic of China†Professor, School of Astronautics; .Search for more papers by this author, Xiucong SunBeihang University, 100191 Beijing, People’s Republic of China‡Lecturer, School of Astronautics; (Corresponding Author).Search for more papers by this author and Zheng QiChina Academy of Launch Vehicle Technology, 100076 Beijing, People’s Republic of China§Researcher, Laboratory of Science and Technology on Space Physics; .Search for more papers by this authorPublished Online:26 Sep 2019https://doi.org/10.2514/1.G004530SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Drob D. P., Emmert J. T., Crowley G., Picone J. M., Shepherd G. G., Skinner W., Hays P., Niciejewski R. J., Larsen M., She C. Y. and et al., “An Empirical Model of the Earth’s Horizontal Wind Fields: HWM07,” Journal of Geophysical Research, Vol. 113, No. A12, 2008, Paper A12304. doi: 10.1029/2008 JA013668 CrossrefGoogle Scholar[2] Wetterer C. J., Linares R., Crassidis J. L., Kelecy T. M., Ziebart M. K., Jah M. K. and Cefola P. J., “Refining Space Object Radiation Pressure Modeling with Bidirectional Reflectance Distribution Functions,” Journal of Guidance, Control, and Dynamics, Vol. 37, No. 1, 2014, pp. 185–196. doi:https://doi.org/10.2514/1.60577 LinkGoogle Scholar[3] Darugna F., Steigenberger P., Montenbruck O. and Casotto S., “Ray-Tracing Solar Radiation Pressure Modeling for QZS-1,” Advances in Space Research, Vol. 62, No. 4, 2018, pp. 935–943. doi:https://doi.org/10.1016/j.asr.2018.05.036 CrossrefGoogle Scholar[4] Bruinsma S., Tamagnan D. and Biancale R., “Atmospheric Densities Derived from CHAMP/STAR Accelerometer Observations,” Planetary and Space Science, Vol. 52, No. 4, 2004, pp. 297–312. doi:https://doi.org/10.1016/j.pss.2003.11.004 CrossrefGoogle Scholar[5] Tapley B. D., Bettadpur S., Watkins M. and Reigber C., “The Gravity Recovery and Climate Experiment: Mission Overview and Early Results,” Geophysical Research Letters, Vol. 31, No. 9, 2004, Paper L09607. doi:https://doi.org/10.1029/2004GL019920 CrossrefGoogle Scholar[6] Floberghagen R., Fehringer M., Lamarre D., Muzi D., Frommknecht B., Steiger C., Piñeiro J. and da Costa A., “Mission Design, Operation and Exploitation of the Gravity Field and Steady-State Ocean Circulation Explorer Mission,” Journal of Geodesy, Vol. 85, No. 11, 2011, pp. 749–758. doi:https://doi.org/10.1007/s00190-011-0498-3 CrossrefGoogle Scholar[7] Christophe B., Foulon B., Liorzou F., Lebat V., Boulanger D., Huynh P.-A., Zahzam N., Bidel Y. and Bresson A., “Status of Development of the Future Accelerometers for Next Generation Gravity Missions,” International Symposium on Advancing Geodesy in a Changing World, Vol. 149, Springer International Publ., Cham, Switzerland, 2019, pp. 85–89. doi:https://doi.org/10.1007/1345_2018_42 Google Scholar[8] Paik H. J., “Superconducting Accelerometry: Its Principles and Applications,” Classical and Quantum Gravity, Vol. 11, No. 6A, 1994, pp. A133–A144. doi:https://doi.org/10.1088/0264-9381/11/6A/010 Google Scholar[9] Griggs C. E., Moody M. V., Norton R. S., Paik H. J. and Venkateswara K., “Sensitive Superconducting Gravity Gradiometer Constructed with Levitated Test Masses,” Physical Review Applied, Vol. 8, No. 6, 2017, Paper 064024. doi:https://doi.org/10.1103/PhysRevApplied.8.064024 Google Scholar[10] Pereira J. P., Overduin J. M. and Poyneer A. J., “Satellite Test of the Equivalence Principle as a Probe of Modified Newtonian Dynamics,” Physical Review Letters, Vol. 117, No. 7, 2016, Paper 071103. doi:https://doi.org/10.1103/PhysRevLett.117.071103 Google Scholar[11] Christian J. A. and Hollenberg C. L., “Initial Orbit Determination from Three Velocity Vectors,” Journal of Guidance, Control, and Dynamics, Vol. 42, No. 4, 2019, pp. 894–899. doi:https://doi.org/10.2514/1.G003988 LinkGoogle Scholar[12] Battin R. H., An Introduction to the Mathematics and Methods of Astrodynamics, rev. ed., AIAA Education Series, AIAA, Reston, VA, 1999, Chaps. 4, 10. LinkGoogle Scholar Previous article Next article FiguresReferencesRelatedDetailsCited byQuantifying the Impact of Air Drag Models Considering a Rotating Atmosphere in RSO Lifetime PredictionsAli Hassani, Danielle Racelis, Sandeep Jada, Jonathan Black, Mathieu Joerger and Aaron Rosengren2 November 2020 What's Popular Volume 42, Number 12December 2019 CrossmarkInformationCopyright © 2019 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-3884 to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsAerodynamicsAeronautical EngineeringAeronauticsAerospace SciencesAstrodynamicsAstronauticsAstronomyCelestial MechanicsOrbital ManeuversOrbital PropertyPlanetary AtmospheresPlanetary Science and ExplorationSolar PhysicsSpace OrbitSpace Science and Technology KeywordsOrbit DeterminationAtmospheric DragSmall SatellitesAccelerometerEarth Centered InertialSolar RadiationEarth AtmosphereApogee AltitudeEarthKepler's OrbitAcknowledgmentsThis research was supported by the Foundation of Key Laboratory of National Defense Science and Technology (No. 61422110303) and the Fundamental Research Funds for the Central Universities (No. YWF-19-BJ-J-276).PDF Received24 April 2019Accepted30 August 2019Published online26 September 2019
更多
查看译文
关键词
atmospheric drag direction
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要