Additive manufacturing by material extrusion with medical grade silicone elastomers and IR laser curing

RAPID PROTOTYPING JOURNAL(2020)

Cited 10|Views0
No score
Abstract
Purpose Techniques of extrude and cure additive manufacturing for thermally cured, high viscosity and medical-grade silicone are investigated by using a small ram extruder and a near-infrared (IR) laser. The purpose of this study is to evaluate the process parameter effects on the stiffness of the final products. Design/methodology/approach Process parameter effects on axial stiffness values and durometer are explored. Parameters such as extrusion layer height, laser speed, laser current, laser raster spacing and multiple laser passes were investigated and compared to traditional cast and cure methods. Dimensional changes were also recorded and compared. Findings Tensile and durometer tests show that certain curing parameters give tensile stress and durometers within 10 per cent of bulk material specifications at 200 per cent strain. Parameters that had the highest impact on tensile stress at 200 per cent strain were layer height (0.73 per cent) followed by laser power (0.69 per cent), and then laser raster spacing (0.45 per cent). Parameters that had the highest impact on durometer were laser power (1.00 per cent), followed by layer height, (0.34 per cent) and then laser raster speed (0.32 per cent). Three-dimensional printed samples had about 11.2 per cent more shrinkage than the bulk cast samples in the longest dimension. Originality/value This paper is one of the first that demonstrates near IR laser curing parameter effects on three-dimensional printed, commercial off-the-shelf, medical-grade and viscous silicone. The ability to cure very viscous thermosets locally enables interesting technologies such as wire encapsulation, high voltage actuators and drug delivery devices.
More
Translated text
Key words
3D printing,Additive manufacturing,Laser curing,Material extrusion,Medical grade,Silicone
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined