Cisplatin, rather than oxaliplatin, increases paracellular permeability of LLC-PK1 cells via activating protein kinase C

Drug Metabolism and Pharmacokinetics(2020)

Cited 7|Views20
No score
Abstract
The clinical use of cisplatin is limited by its adverse events, particularly serious nephrotoxicity. It was clarified that cisplatin is transported by a kidney-specific organic cation transporter (OCT2). OCT2 also mediates the uptake of oxaliplatin into renal proximal tubular cells; however, this agent does not lead nephrotoxicity. In the present study, we carried out comparative experiments with cisplatin and oxaliplatin using porcine kidney LLC-PK1 cell monolayers. In the fluorescein-labeled isothiocyanate-dextran flux assay, the basolateral application of cisplatin, but not oxaliplatin, resulted in an increase in the paracellular permeability of cell monolayers. Even though the cellular accumulation of platinum at 50 μM oxaliplatin could reach the same level at 30 μM cisplatin, oxaliplatin did not induce hyper-permeability in cell monolayers. Cisplatin, but not oxaliplatin, significantly activated PKC. In addition, the combination of PKC inhibitors recovered the increase in paracellular permeability. In conclusion, pharmacodynamic mechanisms via PKC could explain the difference in nephrotoxicity between cisplatin and oxaliplatin.
More
Translated text
Key words
Cisplatin,Oxaliplatin,Nephrotoxicity,Protein kinase C,Paracellular permeability
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined