Modeling Static Behavior of Rockfill Materials Based on Generalized Plasticity Model

ADVANCES IN CIVIL ENGINEERING(2019)

引用 1|浏览4
暂无评分
摘要
Rockfill materials are commonly used for dam construction. Establishing an effective model that can reasonably describe the mechanical properties of rockfill material is very important for the calculation of earth-rock dam engineering. Based on the generalized plasticity model of sand, a modified generalized plasticity model suitable for rockfill material is established by modifying the plastic modulus. Focusing on three types of stress paths (e.g., CT test, CP test, and CR test), the stress path adaptability of the modified generalized plasticity is studied. Simulation results show that the proposed model can well predict the strength characteristics while it underestimates the shrinkage characteristics of rockfill materials for constant P test. It is difficult for the generalized plasticity model to predict larger radial shrinkage strain for constant stress ratio tests. This shortcoming can be improved by employing a modified dilatancy equation. Finally, by introducing critical state theory and considering the effect of initial void ratio on plastic modulus, a state-dependent generalized plasticity model is proposed and verified by experiment of granite rockfill materials and TRM with different void ratios. These works covers the most common stress paths related to the construction of earth-rock dams and can capture static behavior of rockfill materials.
更多
查看译文
关键词
Dam Behaviour Modelling
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要