Vanishing efficiency of a speeded-up ion-in-Paul-trap Otto engine

EPL(2019)

引用 17|浏览2
暂无评分
摘要
We assess the energy cost of shortcuts to adiabatic expansions or compressions of a harmonic oscillator, the power strokes of a quantum Otto engine. Difficulties to identify the cost stem from the interplay between different parts of the total system (the primary system -the particle- and the control system) and definitions of work (exclusive and inclusive). While attention is usually paid to the inclusive work of the microscopic primary system, we identify the energy cost as the exclusive work of the total system, which, for a clear-cut scale disparity between a microscopic primary system and a macroscopic control system, coincides with the exclusive work for the control system alone. We redefine the "engine efficiency" taking into account this cost. Our working horse model is an engine based on an ion in a Paul trap with power strokes designed via shortcuts to adiabaticity. Opposite to the paradigm of slow-cycle reversible engines with vanishing power and maximal efficiency, this fast-cycle engine increases the microscopic power at the price of a vanishing efficiency. The Paul trap fixes the gauge for the primary system, resulting in a counterintuitive evolution of its inclusive power and internal energy. Conditions for which inclusive power of the primary system and exclusive power control system are proportional are found. Copyright (C) EPLA, 2019
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要