Hydrogen production of bio-oil steam reforming combining heat recovery of blast furnace slag: Thermodynamic analysis

International Journal of Hydrogen Energy(2019)

引用 26|浏览6
暂无评分
摘要
Hydrogen production via steam reforming of bio-oil combining heat recovery of blast furnace slag was investigated via thermodynamic analysis in this paper. The addition of blast furnace slag just had a slight enhancement for hydrogen production from the steam reforming process of bio-oil at low temperature, and had almost no thermodynamic effect (either promotion or restraint) for the steam reforming reaction equilibrium at high temperature where higher H2 yield were obtained, no matter how much blast furnace slag was added. However, different masses of blast furnace slag as heat carrier supply different amounts of heat, so the optimal blast furnace slag addition was performed via energy balance. If the sensible heats of the reformed gas and the slag after steam reforming reactions were unrecycled, the required mass of blast furnace slag was over 30 times of bio-oil mass, while the required slag mass was just 11.5 times of bio-oil mass if the sensible heats after the steam reforming reactions were recycled. For the latter, about 0.144 Nm3 H2 per kg blast furnace slag was obtained at the reforming temperature of 700–750 °C and the steam/carbon mole ratio of 6.
更多
查看译文
关键词
Bio-oil,Hydrogen production,Steam reforming,Blast furnace slag,Waste heat recovery
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要