PVA Hydrogel Functionalization via PET-RAFT Grafting with Glycidyl Methacrylate and Immobilization with 2-Hydroxypropyltrimethyl Ammonium Chloride Chitosan via Ring-Open Reaction

Macromolecular Research(2019)

引用 9|浏览18
暂无评分
摘要
To solve the biofouling problem of polyvinyl alcohol (PVA) hydrogel as the artificial cornea, glycidyl methacrylate (GMA) and 2-hydroxypropyltrimethyl ammonium chloride chitosan (HACC) were grafted on the surface of PVA hydrogel via a new method of photoinduced electron transfer—reversible addition fragmentation chain transfer (PET-RAFT) polymerization and ring-open reaction. Both attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), scanning electron microscope (SEM), and thermogravimetric analysis (TGA) confirmed that GMA and HACC were successfully grafted on the surface of PVA hydrogel. A series of experiments to test the hydrophilicity of PVA hydrogel showed that it became hydrophobic due to the introduction of hydrophobic groups after grafting with GMA and HACC. In addition, cytotoxicity in vitro of PVA-g-p(GMA-HACC) hydrogel could be considered as not cytotoxicity according to ISO 10993-5: 2009. The anti-fouling property of hydrogel decreased after grafting with GMA due to the hydrophobic surface, while increased after grafting with HACC due to the steric repulsion of p(GMA-HACC) polymer brush. It’s no doubt that PET-RAFT was a feasible and reliable surface modification method which could be used in many biomolecules due to the excellent advantages.
更多
查看译文
关键词
polyvinyl alcohol (PVA) hydrogel, glycidyl methacrylate (GMA), 2-hydroxypropyltrimethyl ammonium chloride chitosan (HACC), photoinduced electron transfer—reversible addition fragmentation chain transfer (PET-RAFT), surface modification
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要