Alkaloid synthesis is coupled to shoot morphogenesis in Argemone mexicana L. (Papaveraceae) in vitro cultures

In Vitro Cellular & Developmental Biology - Plant(2019)

Cited 5|Views4
No score
Abstract
During the induction process of an in vitro callus culture of Argemone mexicana L. (Papaveraceae), the levels of two benzylisoquinoline alkaloids known as berberine and sanguinarine displayed opposing trends. While the berberine levels steadily decreased from the initial explant stage up to the early proliferation of unorganized parenchymatous cell masses, the sanguinarine content increased. Once the callus culture was established, sanguinarine was the primary alkaloid present and berberine could no longer be detected. However, upon shoot regeneration, the berberine accumulation recovered, but sanguinarine was found in the newly formed leafy tissue. After root formation, sanguinarine was relocated to this organ, whereas berberine was evenly distributed between both tissues. Explants from stem internodes did not form callus, and berberine—plus sanguinarine—containing axillary shoots emerged from lateral buds in the induction medium. In contrast to callus-derived shoots, no root formation was observed. Therefore, alkaloid synthesis in A . mexicana in vitro cultures is related to the level of tissue organization in different ways, and while berberine accumulation seems to require the presence of differentiated organs, this is not the case for sanguinarine. Moreover, leafy parts of rootless shoots acquired the capacity to accumulate sanguinarine, which is usually absent in aerial tissues of mature plants. However, when these shoots were rooted, sanguinarine was mainly located in the newly formed roots, while berberine was detected in the shoots at similar levels found in the roots.
More
Translated text
Key words
Argemone mexicana,Berberine,Sanguinarine,Shoot regeneration
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined