Revisiting The Fragile-To-Strong Crossover In Metallic Glass-Forming Liquids: Application To Cuxzrxal100-2x Alloy

PHYSICAL REVIEW MATERIALS(2019)

引用 6|浏览2
暂无评分
摘要
The fragile-to-strong crossover seems to be a general feature of metallic glass-forming liquids. Here, we study the behavior of shear viscosity, diffusion coefficient, and vibrational density of states for CuxZrxAl100-2x, alloy through molecular dynamics simulations. The results reveal that the fragile-to-strong temperature (T-fs) and the glass transition temperature (T-g) increase as the aluminum content becomes larger. The inverse of the diffusion coefficient as a function of temperature exhibits a dynamical crossover in the vicinity of T-g, at a much lower temperature than that predicted by nearly all previous studies. At the temperature in which the dynamical crossover occurs determined by the inverse of the diffusion coefficient, we found an excess of vibrational states at low frequencies, resembling a pronounced peak in the reduced vibrational density of states characteristic of a strong liquid. Finally, the behavior of the shear viscosity as a function of reduced temperature (T-g/T) also shows that, aside from the fragile-to-strong crossover nearby T-g, another dynamical crossover is present near the onset of the supercooled regime.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要