Entirely, Intrinsically, And Autonomously Self-Healable, Highly Transparent, And Superstretchable Triboelectric Nanogenerator For Personal Power Sources And Self-Powered Electronic Skins

ADVANCED FUNCTIONAL MATERIALS(2019)

引用 130|浏览21
暂无评分
摘要
Power and electronic components that are self-healable, deformable, transparent, and self-powered are highly desirable for next-generation energy/electronic/robotic applications. Here, an energy-harvesting triboelectric nanogenerator (TENG) that combines the above features is demonstrated, which can serve not only as a power source but also as self-powered electronic skin. This is the first time that both of the triboelectric-charged layer and electrode of the TENG are intrinsically and autonomously self-healable at ambient conditions. Additionally, comparing with previous partially healable TENGs, its fast healing time (30 min, 100% efficiency at 900% strain), high transparency (88.6%), and inherent superstretchability (>900%) are much more favorable. It consists of a metal-coordinated polymer as the triboelectrically charged layer and hydrogen-bonded ionic gel as the electrode. Even after 500 cutting-and-healing cycles or under extreme 900%-strain, the TENG retains its functionality. The generated electricity can be used directly or stored to power commercial electronics. The TENG is further used as self-powered tactile-sensing skin in diverse human-machine interfaces including smart glass, an epidermal controller, and phone panel. This TENG with merits including fast ambient-condition self-healing, high transparency, intrinsic stretchability, and energy-extraction and actively-sensing abilities, can meet wide application needs ranging from deformable/portable/transparent electronics, smart interfaces, to artificial skins.
更多
查看译文
关键词
electronic skins, human-device interfaces, power sources, self-healing, triboelectric nanogenerators
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要