The Power of the Secondary Sphere: Modulating Hydrogenase Activity in Nickel-Substituted Rubredoxin

ACS Catalysis(2019)

引用 31|浏览3
暂无评分
摘要
Secondary sphere interactions are known to significantly impact catalytic rates within biological systems as well as synthetic molecular catalysts. The [NiFe] hydrogenase enzymes oxidize and produce molecular hydrogen at high turnover rates within a complex coordination environment. Nickel-substituted rubredoxin (NiRd) has been developed as a functional, protein-based mimic of the [NiFe] hydrogenase, providing an opportunity to understand the influence of the secondary coordination environment on proton reduction activity. In this work, a rationally designed series of mutants was generated to study the effects of outer-sphere interactions on catalysis. This library was characterized using quantitative protein film electrochemistry, optical spectroscopy, X-ray crystallography, and molecular dynamics simulations. Changing the secondary sphere residues modulates the redox activity of the nickel- and iron-bound rubredoxin proteins, alters the hydrogen-bonding network, and perturbs solvent accessibility of the active site, which correlates with catalytic turnover frequency. The effects on reactivity are dependent on the site of mutation and, when coupled to crystallographic and computational analyses, implicate one of the nickel-coordinating cysteine residues as the mechanistically relevant site of protonation. Introduction of a carboxylate residue, mimicking that found in the [NiFe] hydrogenase, significantly increases the overall catalytic rate, likely through installation of a proton transfer pathway into the active site. Apparent turnover frequencies within the mutant constructs range from 15 to 500 s(-1) without imparting significant variation in overpotential, and many mutants break the typical scaling relationship between catalytic rates and overpotential that is often seen in small-molecule systems. These results demonstrate the substantial impact of the coordination environment on the hydrogen-producing activity of the artificial metalloenzyme, NiRd, and highlight the importance of such interactions within molecular catalysts.
更多
查看译文
关键词
hydrogen production,artificial metalloenzyme,protein film electrochemistry,outer-sphere effects,electrocatalysis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要