Pseudomonas aeruginosa -Derived Volatile Sulfur Compounds Promote Distal Aspergillus fumigatus Growth and a Synergistic Pathogen-Pathogen Interaction That Increases Pathogenicity in Co-infection.

FRONTIERS IN MICROBIOLOGY(2019)

Cited 36|Views24
No score
Abstract
Pathogen-pathogen interactions in polymicrobial infections are known to directly impact, often to worsen, disease outcomes. For example, co-infection with Pseudomonas aeruginosa and Aspergillus fumigatus, respectively the most common bacterial and fungal pathogens isolated from cystic fibrosis (CF) airways, leads to a worsened prognosis. Recent studies of in vitro microbial cross-talk demonstrated that P. aeruginosa-derived volatile sulfur compounds (VSCs) can promote A. fumigatus growth in vitro. However, the mechanistic basis of such cross-talk and its physiological relevance during co-infection remains unknown. In this study we combine genetic approaches and GC-MS-mediated volatile analysis to show that A. fumigatus assimilates VSCs via cysteine (CysB)- or homocysteine (CysD)-synthase. This process is essential for utilization of VSCs as sulfur sources, since P. aeruginosa-derived VSCs trigger growth of A. fumigatus wild-type, but not of a 1cysB1cysD mutant, on sulfur-limiting media. P. aeruginosa produces VSCs when infecting Galleria mellonella and co-infection with A. fumigatus in this model results in a synergistic increase in mortality and of fungal and bacterial burdens. Interestingly, the increment in mortality is much greater with the A. fumigatus wild-type than with the 1cysB1cysD mutant. Therefore, A. fumigatus' ability to assimilate P. aeruginosa derived VSCs significantly triggers a synergistic association that increases the pathobiology of infection. Finally, we show that P. aeruginosa can promote fungal growth when growing on substrates that resemble the lung environment, which suggests that this volatile based synergism is likely to occur during co-infection of the human respiratory airways.
More
Translated text
Key words
P. aeruginosa,A. fumigatus interaction,co-infection,volatile sulfur compounds,volatile interaction,interkingdom interaction,polymicrobial infection
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined