Link between magnetism and resistivity upturn in cuprates: a thermal conductivity study of La$_{2-x}$Sr$_x$CuO$_4$

Physical Review B(2019)

引用 7|浏览56
暂无评分
摘要
A key unexplained feature of cuprate superconductors is the upturn in their normal state electrical resistivity $\rho(T)$ seen at low temperature inside the pseudogap phase. We examined this issue via measurements of the thermal conductivity $\kappa(T)$ down to 50 mK and in fields up to 17 T on the cuprate La$_{2-x}$Sr$_x$CuO$_4$ at dopings $p = 0.13$, 0.136, 0.143 and 0.18. At $p$ = 0.136, 0.143, and 0.18, we observe an initial increase of the electronic thermal conductivity $\kappa_0/T$ as a function of field, as expected in a $d$-wave superconductor. For $p$ = 0.136 and 0.143, further increasing the field then leads to a decrease of $\kappa_0/T$, which correlates with the onset of spin density-wave order as observed in neutron scattering experiments on the same samples. This decrease of $\kappa_0/T$ with field is imposed by the Wiedemann-Franz law and the high value of the resistivity in the high-field normal state of these samples. Our study therefore provides a direct link between magnetism and the resistivity upturn in the pseudogap phase of cuprates. We discuss this scenario in the broader context of other cuprates.
更多
查看译文
关键词
thermal conductivity,thermal conductivity study,cuprates,magnetism
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要