Quantum speed limit and shortcuts to adiabaticity in coherent many-particle systems

arxiv(2019)

引用 0|浏览0
暂无评分
摘要
We discuss the effects of many-body coherence on the quantum speed limit in ultracold atomic gases. Our approach is focused on two related systems, spinless fermions and the bosonic Tonks-Girardeau gas, which possess equivalent density dynamics but very different coherence properties. To illustrate the effect of the coherence on the dynamics we consider squeezing an anharmonic potential which confines the particles and find that the quantum speed limit exhibits subtle, but fundamental, differences between the atomic species. Furthermore, we explore the difference in the driven dynamics by implementing a shortcut to adiabaticity designed to reduce spurious excitations. We show that collisions between the strongly interacting bosons can lead to changes in the coherence which results in larger speed limits.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要