Molecular and genetic basis of azole antifungal resistance in the opportunistic pathogenic fungus Candida albicans

JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY(2020)

Cited 56|Views10
No score
Abstract
Candida albicans is an opportunistic yeast and the major human fungal pathogen in the USA, as well as in many other regions of the world. Infections with C. albicans can range from superficial mucosal and dermatological infections to life-threatening infections of the bloodstream and vital organs. The azole antifungals remain an important mainstay treatment of candidiasis and therefore the investigation and understanding of the evolution, frequency and mechanisms of azole resistance are vital to improving treatment strategies against this organism. Here the organism C. albicans and the genetic changes and molecular bases underlying the currently known resistance mechanisms to the azole antifungal class are reviewed, including up-regulated expression of efflux pumps, changes in the expression and amino acid composition of the azole target Erg11 and alterations to the organism's typical sterol biosynthesis pathways. Additionally, we update what is known about activating mutations in the zinc cluster transcription factor (ZCF) genes regulating many of these resistance mechanisms and review azole import as a potential contributor to azole resistance. Lastly, investigations of azole tolerance in C. albicans and its implicated clinical significance are reviewed.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined